АННОТАЦИЯ

Диссертационной работы на тему:

«РАЗРАБОТКА ТЕХНОЛОГИИ ИЗВЛЕЧЕНИЯ СОЕДИНЕНИЙ НИОБИЯ В ПРОЦЕССЕ ПРОИЗВОДСТВА ТЕТРАХЛОРИДА ТИТАНА»

Представленной на соискание степени доктора философии (Phd) по специальности 6D070900 – «Металлургия»

САРСЕМБЕКОВА ТУРАРА КУСМАНОВИЧА

Целью диссертационного исследования является повышение эффективности переработки титансодержащего сырья путём разработки технологии попутного извлечения ниобия при получении тетрахлорида титана, что позволит расширить номенклатуру выпускаемых редких металлов, повысить рентабельность производства и снизить объём отходов за счёт извлечения ценных компонентов из побочных продуктов.

Задачи исследования:

- 1. Сбор, систематизация и критический анализ научно-технической информации по существующим методам переработки титансодержащего сырья, включая исследования в области попутного извлечения ниобия.
- 2. Термодинамический анализ процессов рудотермической восстановительной плавки и хлорной переработки титансодержащего сырья с построением температурных зависимостей стандартной энергии Гиббса реакций хлорирования ниобийсодержащих фаз.
- 3. Фазово-минераоргическое исследования исходного и вторичного титансодержащего сырья, включая ильменитовый концентрат, титановый шлак, а также побочные продукты производства тетрахлорида титана (отвальный шлам, возгоны, пульпа оросительного скруббера), с целью определения локализации и поведения ниобия.
- 4. Синтез искусственного ильменита с повышенным содержанием №2О₅ (~1,7 %) и проведение комплексного анализа его фазового состава.
- 5. Экспериментальное исследование количественного распределения ниобия по основным технологическим потокам при переработке титансодержащего сырья, включая стадии плавки, хлорирования и конденсации.
- 6. Разработка и лабораторная проверка технологии извлечения ниобия из наиболее перспективных промышленных продуктов, включая этапы концентрирования, фазового анализа и селективной переработки.

Методы исследования.

В диссертационной работе применён комплекс современных научных и инженерных методов, обеспечивающий достоверное исследование процессов переработки титансодержащего сырья с извлечением ниобия и возможность внедрения результатов в промышленность.

1. Термодинамическое моделирование выполнено в HSC Chemistry 6.0 (Outotec) для реакций восстановления, хлорирования и испарения соединений ниобия, титана и железа в температурном диапазоне 600-1200 °C.

Моделирование учитывало условия расплава хлоридов и обеспечивало выбор оптимальных параметров фазового разделения.

- 2. Кинетический анализ проведён по TG/DSC-данным с использованием модуля Thermokinetics (NETZSCH Proteus), что позволило оценить параметры разложения оксидных фаз и феррониобатов в условиях хлорирования.
- 3. Фазовый и структурный анализ осуществлялся методом РФА на дифрактометре ДРОН-3 с автоматической идентификацией фаз по базе PDF-2, обеспечивая интерпретацию многокомпонентных систем.
- 4. Микроструктурные исследования проводились на SEM JEOL JSM-6010PLUS-LA в режиме BSE с EDS-анализом распределения элементов (Nb, Ti, Fe и др.).
- 5. Химический анализ содержания Nb₂O₅ и других компонентов проводился методами атомно-эмиссионной спектрометрии (AЭС) и фотометрии (КФК-3), с подготовкой проб по стандартным методикам.
- 6. Инженерные расчёты и моделирование материальных потоков выполнены в MS Excel с использованием аналитических уравнений перерасчёта при варьировании параметров технологического процесса.

Основные положения (доказанные научные гипотезы и другие выводы, являющиеся новыми знаниями), выносимые на защиту:

- 1. Результаты термодинамического анализа рудотермической и хлорной переработки титансодержащего сырья;
- 2. Результаты минералого-фазового анализа титансодержащего сырья и промпродуктов, включая локализацию и распределение ниобия;
- 3. Результаты лабораторного синтеза искусственного ильменита с повышенным содержанием ниобия и изучения его фазовых характеристик;
- 4. Результаты исследования количественного распределения ниобия при рудотермической восстановительной плавке ильменитового концентрата и при хлорной переработке титанового шлака;
- 5. Результаты разработки технологии получения ниобий содержащего продукта из промпродуктов хлорной переработки;
- 6. Результаты разработки аппаратурно-технологической схемы извлечения ниобий содержащего продукта из пульпы оросительного скруббера хлорирующей установки;
- 7. Результаты экономической оценки внедрения переработки пульпы оросительного скруббера.

Объектами исследований — ильменитовый концентрат (Сатпаевское месторождение), титановый шлак, а также промпродукты хлорной переработки: пульпа оросительного скруббера, отвальный шлам титанового хлоратора, возгоны пылевой камеры, расплав пылеосадительной камеры.

Описание основных результатов исследования.

В разделе 1 выполнен обзор и дана критическая оценка подходов к извлечению ниобия из титан-железо-оксидных и хлоридных систем; сформулированы требования к целевой технологии и пробелы знаний. В разделе 2 проведён термодинамический анализ рудотермической плавки и

хлорирования титанового шлака: определены интервалы температур и парциальных давлений реагентов, обеспечивающие образование $NbCl_5/NbOCl_x$ и минимизацию устойчивых ниобатов; построены карты равновесных состояний.

В разделе 3 выполнены минералого-фазовые исследования сырья и промпродуктов (XRD, XRF, SEM-EDS/WDS): подтверждена двухмодальная локализация Nb в ильмените; для шлака показан фон в Ті-оксидной матрице и локальные обогащения в силикатно-титанатных микрофазах; в пульпе и возгонах идентифицированы носители типа оксидов и оксихлоридов ниобия.

В разделе 4 получены материальные балансы распределения ниобия по потокам промышленной схемы, в том числе при варьировании доли отбора пульпы; показано, что достижение 16–20 % Nb₂O₅ в пульпе обеспечивается регулируемым отбором и тепломассобменом узла скруббирования.

В разделе 5 исследованы гидро- и экстракционные режимы выделения ниобия из прокалённого остатка пульпы; предложены селективные схемы с последующей концентрирующей стадией.

В разделе 6 разработана и обоснована аппаратурно-технологическая схема участка извлечения ниобия из пульпы (состав оборудования, режимы, узлы конденсации и отлива TiCl₄, утилизация побочных потоков).

В разделе 7 представлена технико-экономическая оценка: рассчитаны материальные потоки, ожидаемые показатели извлечения и экономической эффективности; показана промышленная реализуемость.

Обоснование новизны и важности полученных результатов.

Новизна темы состоит в разработке технологии извлечения соединений ниобия в процессе производства тетрахлорида титана, методом извлечения ниобия из осадка пульпы оросительного скруббера, включающий прокаливание и селективную переработку твёрдого остатка с получением ниобийсодержащего концентрата, с содержание Nb до 12-20 %, с извлечением до 23,84 % Nb от его содержания в исходном шлаке.

Важность полученных результатов. Впервые для условий промышленного производства TiCl₄ в Казахстане дана согласованная термодинамико-минералогическая картина поведения ниобия на всех ключевых стадиях, количественно оценено его распределение и предложена технологически реализуемая схема изъятия из пульпы оросительного скруббера. Результаты сокращают безвозвратные потери ниобия, повышают комплексность использования минерального сырья, улучшают экологические и технико-экономические показатели производства.

Соответствие приоритетам развития науки и госпрограммам.

Работа соответствует приоритету «Рациональное использование природных ресурсов, геология, переработка, новые материалы и технологии» и подприоритету «Комплексное и безотходное использование минерального сырья» Республики Казахстан. Диссертационная работа выполнялась в рамках проекта «Жас ғалым» на 2024-2026 годы по теме AP22686490 «Титан бар шикізатты хлормен өңдеу кезінде ниобий алу», финансируемого Комитетом науки Министерства образования и науки Республики Казахстан.

Личный вклад автора заключается в самостоятельной формулировке целей и задач исследования, разработке программы и методологического подхода, а также в планировании и проведении комплекса минералогофазовых и химических исследований. Автором выполнено термодинамическое моделирование процессов, разработаны и апробированы лабораторные и укрупнённые методики извлечения целевых соединений, рассчитаны материальные балансы. На основе полученных результатов спроектирована аппаратурно-технологическая схема с проведением технико-экономической оценки её внедрения. Итоги работы обобщены в научных публикациях и докладах, подготовленных автором.

По материалам диссертационной работы непосредственно с участием автора опубликовано 8 печатных работ, из них 2 статьи в международных рецензируемых научных журналах, входящие в БД Scopus/Web of Science, 3 статьи, опубликованные в научных журналах и изданиях, рекомендованных ККСОН МОН РК и 3 доклада на международных научно-практических конференциях.